Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The assessment of the impact of aviation NOx on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately

Identifieur interne : 000019 ( PascalFrancis/Corpus ); précédent : 000018; suivant : 000020

The assessment of the impact of aviation NOx on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately

Auteurs : A. Skowron ; D. S. Lee ; R. R. De Leon

Source :

RBID : Pascal:13-0311008

Descripteurs français

English descriptors

Abstract

Aviation emissions of NOx result in the formation of tropospheric ozone (warming) and destruction of a small amount of methane (cooling), positive and negative radiative forcing effects. In addition, the reduction of methane results in a small long-term reduction in tropospheric ozone (cooling) and, in addition, a long-term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of methane, both negative radiative forcing impacts. Taking all these radiative effects together, aircraft NOx is still thought to result in a positive (warming) radiative effect under constant emissions assumptions. Previously, comparative modelling studies have focussed on the variability between models, using the same emissions database. In this study, we rather quantify the variability and uncertainty arising from different estimations of present-day aircraft NOx emissions. Six different aircraft NOx emissions inventories were used in the global chemical transport model, MOZART v3. The inventories were normalized to give the same global emission of NOx in order to remove one element of uncertainty. Emissions differed in the normalized cases by 23% at cruise altitudes (283-200 hPa, where the bulk of emission occurs, globally). However, the resultant short-term ozone chemical perturbation varied by 15% between the different inventories. Once all the effects that give rise to positive and negative radiative impacts were accounted for, the variability of net radiative forcing impacts was 94%. Using these radiative effects to formulate a net aviation NOx Global Warming Potential (GWP) for a 100-year time horizon resulted in GWPs ranging from 60 to 4, over an order of magnitude. It is concluded that the detailed placement of emissions at chemically sensitive cruise altitudes strongly affects the assessment of the total radiative impact, introducing a hitherto previously unidentified large fraction of the uncertainty of impacts between different modelling assessments. It is recommended that future formulations of aircraft NOx emissions focus efforts on the detailed and accurate placement of emissions at cruise altitudes to reduce the uncertainty in future assessments of aviation NOx impacts.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 74
A08 01  1  ENG  @1 The assessment of the impact of aviation NOx on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately
A11 01  1    @1 SKOWRON (A.)
A11 02  1    @1 LEE (D. S.)
A11 03  1    @1 DE LEON (R. R.)
A14 01      @1 Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street @2 Manchester M1 5GD @3 GBR @Z 1 aut. @Z 2 aut. @Z 3 aut.
A20       @1 159-168
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000503801620180
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 13-0311008
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 Aviation emissions of NOx result in the formation of tropospheric ozone (warming) and destruction of a small amount of methane (cooling), positive and negative radiative forcing effects. In addition, the reduction of methane results in a small long-term reduction in tropospheric ozone (cooling) and, in addition, a long-term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of methane, both negative radiative forcing impacts. Taking all these radiative effects together, aircraft NOx is still thought to result in a positive (warming) radiative effect under constant emissions assumptions. Previously, comparative modelling studies have focussed on the variability between models, using the same emissions database. In this study, we rather quantify the variability and uncertainty arising from different estimations of present-day aircraft NOx emissions. Six different aircraft NOx emissions inventories were used in the global chemical transport model, MOZART v3. The inventories were normalized to give the same global emission of NOx in order to remove one element of uncertainty. Emissions differed in the normalized cases by 23% at cruise altitudes (283-200 hPa, where the bulk of emission occurs, globally). However, the resultant short-term ozone chemical perturbation varied by 15% between the different inventories. Once all the effects that give rise to positive and negative radiative impacts were accounted for, the variability of net radiative forcing impacts was 94%. Using these radiative effects to formulate a net aviation NOx Global Warming Potential (GWP) for a 100-year time horizon resulted in GWPs ranging from 60 to 4, over an order of magnitude. It is concluded that the detailed placement of emissions at chemically sensitive cruise altitudes strongly affects the assessment of the total radiative impact, introducing a hitherto previously unidentified large fraction of the uncertainty of impacts between different modelling assessments. It is recommended that future formulations of aircraft NOx emissions focus efforts on the detailed and accurate placement of emissions at cruise altitudes to reduce the uncertainty in future assessments of aviation NOx impacts.
C02 01  X    @0 001D16C04C
C02 02  2    @0 001E02D10
C03 01  X  FRE  @0 Trafic aérien @5 01
C03 01  X  ENG  @0 Air traffic @5 01
C03 01  X  SPA  @0 Tráfico aéreo @5 01
C03 02  X  FRE  @0 Avion @5 02
C03 02  X  ENG  @0 Airplane @5 02
C03 02  X  SPA  @0 Avión @5 02
C03 03  X  FRE  @0 Oxyde d'azote @5 03
C03 03  X  ENG  @0 Nitrogen oxide @5 03
C03 03  X  SPA  @0 Nitrógeno óxido @5 03
C03 04  X  FRE  @0 Etude impact @5 04
C03 04  X  ENG  @0 Impact study @5 04
C03 04  X  SPA  @0 Estudio impacto @5 04
C03 05  X  FRE  @0 Ozone @2 NK @2 FX @5 05
C03 05  X  ENG  @0 Ozone @2 NK @2 FX @5 05
C03 05  X  SPA  @0 Ozono @2 NK @2 FX @5 05
C03 06  X  FRE  @0 Pollution air @5 06
C03 06  X  ENG  @0 Air pollution @5 06
C03 06  X  SPA  @0 Contaminación aire @5 06
C03 07  X  FRE  @0 Troposphère @5 07
C03 07  X  ENG  @0 Troposphere @5 07
C03 07  X  SPA  @0 Troposfera @5 07
C03 08  X  FRE  @0 Forçage @5 08
C03 08  X  ENG  @0 Forcing @5 08
C03 08  X  SPA  @0 Forzamiento @5 08
C03 09  X  FRE  @0 Transfert radiatif @5 09
C03 09  X  ENG  @0 Radiative transfer @5 09
C03 09  X  SPA  @0 Transferencia radiativa @5 09
C03 10  X  FRE  @0 Potentiel réchauffement global @5 10
C03 10  X  ENG  @0 Global warming potential @5 10
C03 10  X  SPA  @0 Potencial calefacción global @5 10
C03 11  X  FRE  @0 Altitude @5 11
C03 11  X  ENG  @0 Altitude @5 11
C03 11  X  SPA  @0 Altitud @5 11
C03 12  X  FRE  @0 Composé de l'azote @2 NK @5 35
C03 12  X  ENG  @0 Nitrogen compounds @2 NK @5 35
C03 12  X  SPA  @0 Compuesto nitrogenado @2 NK @5 35
C03 13  3  FRE  @0 Oxydant photochimique @5 36
C03 13  3  ENG  @0 Photochemical oxidants @5 36
C03 14  X  FRE  @0 Changement climatique @5 37
C03 14  X  ENG  @0 Climate change @5 37
C03 14  X  SPA  @0 Cambio climático @5 37
C07 01  X  FRE  @0 Climatologie dynamique
C07 01  X  ENG  @0 Dynamical climatology
C07 01  X  SPA  @0 Climatología dinámica
N21       @1 294

Format Inist (serveur)

NO : PASCAL 13-0311008 INIST
ET : The assessment of the impact of aviation NOx on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately
AU : SKOWRON (A.); LEE (D. S.); DE LEON (R. R.)
AF : Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street/Manchester M1 5GD/Royaume-Uni (1 aut., 2 aut., 3 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2013; Vol. 74; Pp. 159-168; Bibl. 3/4 p.
LA : Anglais
EA : Aviation emissions of NOx result in the formation of tropospheric ozone (warming) and destruction of a small amount of methane (cooling), positive and negative radiative forcing effects. In addition, the reduction of methane results in a small long-term reduction in tropospheric ozone (cooling) and, in addition, a long-term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of methane, both negative radiative forcing impacts. Taking all these radiative effects together, aircraft NOx is still thought to result in a positive (warming) radiative effect under constant emissions assumptions. Previously, comparative modelling studies have focussed on the variability between models, using the same emissions database. In this study, we rather quantify the variability and uncertainty arising from different estimations of present-day aircraft NOx emissions. Six different aircraft NOx emissions inventories were used in the global chemical transport model, MOZART v3. The inventories were normalized to give the same global emission of NOx in order to remove one element of uncertainty. Emissions differed in the normalized cases by 23% at cruise altitudes (283-200 hPa, where the bulk of emission occurs, globally). However, the resultant short-term ozone chemical perturbation varied by 15% between the different inventories. Once all the effects that give rise to positive and negative radiative impacts were accounted for, the variability of net radiative forcing impacts was 94%. Using these radiative effects to formulate a net aviation NOx Global Warming Potential (GWP) for a 100-year time horizon resulted in GWPs ranging from 60 to 4, over an order of magnitude. It is concluded that the detailed placement of emissions at chemically sensitive cruise altitudes strongly affects the assessment of the total radiative impact, introducing a hitherto previously unidentified large fraction of the uncertainty of impacts between different modelling assessments. It is recommended that future formulations of aircraft NOx emissions focus efforts on the detailed and accurate placement of emissions at cruise altitudes to reduce the uncertainty in future assessments of aviation NOx impacts.
CC : 001D16C04C; 001E02D10
FD : Trafic aérien; Avion; Oxyde d'azote; Etude impact; Ozone; Pollution air; Troposphère; Forçage; Transfert radiatif; Potentiel réchauffement global; Altitude; Composé de l'azote; Oxydant photochimique; Changement climatique
FG : Climatologie dynamique
ED : Air traffic; Airplane; Nitrogen oxide; Impact study; Ozone; Air pollution; Troposphere; Forcing; Radiative transfer; Global warming potential; Altitude; Nitrogen compounds; Photochemical oxidants; Climate change
EG : Dynamical climatology
SD : Tráfico aéreo; Avión; Nitrógeno óxido; Estudio impacto; Ozono; Contaminación aire; Troposfera; Forzamiento; Transferencia radiativa; Potencial calefacción global; Altitud; Compuesto nitrogenado; Cambio climático
LO : INIST-8940B.354000503801620180
ID : 13-0311008

Links to Exploration step

Pascal:13-0311008

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The assessment of the impact of aviation NO
<sub>x</sub>
on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately</title>
<author>
<name sortKey="Skowron, A" sort="Skowron, A" uniqKey="Skowron A" first="A." last="Skowron">A. Skowron</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street</s1>
<s2>Manchester M1 5GD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lee, D S" sort="Lee, D S" uniqKey="Lee D" first="D. S." last="Lee">D. S. Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street</s1>
<s2>Manchester M1 5GD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De Leon, R R" sort="De Leon, R R" uniqKey="De Leon R" first="R. R." last="De Leon">R. R. De Leon</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street</s1>
<s2>Manchester M1 5GD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0311008</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0311008 INIST</idno>
<idno type="RBID">Pascal:13-0311008</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000019</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The assessment of the impact of aviation NO
<sub>x</sub>
on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately</title>
<author>
<name sortKey="Skowron, A" sort="Skowron, A" uniqKey="Skowron A" first="A." last="Skowron">A. Skowron</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street</s1>
<s2>Manchester M1 5GD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lee, D S" sort="Lee, D S" uniqKey="Lee D" first="D. S." last="Lee">D. S. Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street</s1>
<s2>Manchester M1 5GD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De Leon, R R" sort="De Leon, R R" uniqKey="De Leon R" first="R. R." last="De Leon">R. R. De Leon</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street</s1>
<s2>Manchester M1 5GD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air pollution</term>
<term>Air traffic</term>
<term>Airplane</term>
<term>Altitude</term>
<term>Climate change</term>
<term>Forcing</term>
<term>Global warming potential</term>
<term>Impact study</term>
<term>Nitrogen compounds</term>
<term>Nitrogen oxide</term>
<term>Ozone</term>
<term>Photochemical oxidants</term>
<term>Radiative transfer</term>
<term>Troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Trafic aérien</term>
<term>Avion</term>
<term>Oxyde d'azote</term>
<term>Etude impact</term>
<term>Ozone</term>
<term>Pollution air</term>
<term>Troposphère</term>
<term>Forçage</term>
<term>Transfert radiatif</term>
<term>Potentiel réchauffement global</term>
<term>Altitude</term>
<term>Composé de l'azote</term>
<term>Oxydant photochimique</term>
<term>Changement climatique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aviation emissions of NO
<sub>x</sub>
result in the formation of tropospheric ozone (warming) and destruction of a small amount of methane (cooling), positive and negative radiative forcing effects. In addition, the reduction of methane results in a small long-term reduction in tropospheric ozone (cooling) and, in addition, a long-term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of methane, both negative radiative forcing impacts. Taking all these radiative effects together, aircraft NO
<sub>x</sub>
is still thought to result in a positive (warming) radiative effect under constant emissions assumptions. Previously, comparative modelling studies have focussed on the variability between models, using the same emissions database. In this study, we rather quantify the variability and uncertainty arising from different estimations of present-day aircraft NO
<sub>x</sub>
emissions. Six different aircraft NO
<sub>x</sub>
emissions inventories were used in the global chemical transport model, MOZART v3. The inventories were normalized to give the same global emission of NO
<sub>x</sub>
in order to remove one element of uncertainty. Emissions differed in the normalized cases by 23% at cruise altitudes (283-200 hPa, where the bulk of emission occurs, globally). However, the resultant short-term ozone chemical perturbation varied by 15% between the different inventories. Once all the effects that give rise to positive and negative radiative impacts were accounted for, the variability of net radiative forcing impacts was 94%. Using these radiative effects to formulate a net aviation NO
<sub>x</sub>
Global Warming Potential (GWP) for a 100-year time horizon resulted in GWPs ranging from 60 to 4, over an order of magnitude. It is concluded that the detailed placement of emissions at chemically sensitive cruise altitudes strongly affects the assessment of the total radiative impact, introducing a hitherto previously unidentified large fraction of the uncertainty of impacts between different modelling assessments. It is recommended that future formulations of aircraft NO
<sub>x</sub>
emissions focus efforts on the detailed and accurate placement of emissions at cruise altitudes to reduce the uncertainty in future assessments of aviation NO
<sub>x</sub>
impacts.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>74</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>The assessment of the impact of aviation NO
<sub>x</sub>
on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SKOWRON (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LEE (D. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DE LEON (R. R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street</s1>
<s2>Manchester M1 5GD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>159-168</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000503801620180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0311008</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Aviation emissions of NO
<sub>x</sub>
result in the formation of tropospheric ozone (warming) and destruction of a small amount of methane (cooling), positive and negative radiative forcing effects. In addition, the reduction of methane results in a small long-term reduction in tropospheric ozone (cooling) and, in addition, a long-term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of methane, both negative radiative forcing impacts. Taking all these radiative effects together, aircraft NO
<sub>x</sub>
is still thought to result in a positive (warming) radiative effect under constant emissions assumptions. Previously, comparative modelling studies have focussed on the variability between models, using the same emissions database. In this study, we rather quantify the variability and uncertainty arising from different estimations of present-day aircraft NO
<sub>x</sub>
emissions. Six different aircraft NO
<sub>x</sub>
emissions inventories were used in the global chemical transport model, MOZART v3. The inventories were normalized to give the same global emission of NO
<sub>x</sub>
in order to remove one element of uncertainty. Emissions differed in the normalized cases by 23% at cruise altitudes (283-200 hPa, where the bulk of emission occurs, globally). However, the resultant short-term ozone chemical perturbation varied by 15% between the different inventories. Once all the effects that give rise to positive and negative radiative impacts were accounted for, the variability of net radiative forcing impacts was 94%. Using these radiative effects to formulate a net aviation NO
<sub>x</sub>
Global Warming Potential (GWP) for a 100-year time horizon resulted in GWPs ranging from 60 to 4, over an order of magnitude. It is concluded that the detailed placement of emissions at chemically sensitive cruise altitudes strongly affects the assessment of the total radiative impact, introducing a hitherto previously unidentified large fraction of the uncertainty of impacts between different modelling assessments. It is recommended that future formulations of aircraft NO
<sub>x</sub>
emissions focus efforts on the detailed and accurate placement of emissions at cruise altitudes to reduce the uncertainty in future assessments of aviation NO
<sub>x</sub>
impacts.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C04C</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E02D10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Trafic aérien</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Air traffic</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Tráfico aéreo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Avion</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Airplane</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Avión</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxyde d'azote</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nitrogen oxide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Nitrógeno óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Etude impact</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Impact study</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estudio impacto</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Forçage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Forcing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Forzamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Transfert radiatif</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Radiative transfer</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Transferencia radiativa</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Potentiel réchauffement global</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Global warming potential</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Potencial calefacción global</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Altitude</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Altitude</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Altitud</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Composé de l'azote</s0>
<s2>NK</s2>
<s5>35</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Nitrogen compounds</s0>
<s2>NK</s2>
<s5>35</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Compuesto nitrogenado</s0>
<s2>NK</s2>
<s5>35</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Oxydant photochimique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Photochemical oxidants</s0>
<s5>36</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Changement climatique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Climate change</s0>
<s5>37</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cambio climático</s0>
<s5>37</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Climatologie dynamique</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Dynamical climatology</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Climatología dinámica</s0>
</fC07>
<fN21>
<s1>294</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0311008 INIST</NO>
<ET>The assessment of the impact of aviation NO
<sub>x</sub>
on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately</ET>
<AU>SKOWRON (A.); LEE (D. S.); DE LEON (R. R.)</AU>
<AF>Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street/Manchester M1 5GD/Royaume-Uni (1 aut., 2 aut., 3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2013; Vol. 74; Pp. 159-168; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Aviation emissions of NO
<sub>x</sub>
result in the formation of tropospheric ozone (warming) and destruction of a small amount of methane (cooling), positive and negative radiative forcing effects. In addition, the reduction of methane results in a small long-term reduction in tropospheric ozone (cooling) and, in addition, a long-term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of methane, both negative radiative forcing impacts. Taking all these radiative effects together, aircraft NO
<sub>x</sub>
is still thought to result in a positive (warming) radiative effect under constant emissions assumptions. Previously, comparative modelling studies have focussed on the variability between models, using the same emissions database. In this study, we rather quantify the variability and uncertainty arising from different estimations of present-day aircraft NO
<sub>x</sub>
emissions. Six different aircraft NO
<sub>x</sub>
emissions inventories were used in the global chemical transport model, MOZART v3. The inventories were normalized to give the same global emission of NO
<sub>x</sub>
in order to remove one element of uncertainty. Emissions differed in the normalized cases by 23% at cruise altitudes (283-200 hPa, where the bulk of emission occurs, globally). However, the resultant short-term ozone chemical perturbation varied by 15% between the different inventories. Once all the effects that give rise to positive and negative radiative impacts were accounted for, the variability of net radiative forcing impacts was 94%. Using these radiative effects to formulate a net aviation NO
<sub>x</sub>
Global Warming Potential (GWP) for a 100-year time horizon resulted in GWPs ranging from 60 to 4, over an order of magnitude. It is concluded that the detailed placement of emissions at chemically sensitive cruise altitudes strongly affects the assessment of the total radiative impact, introducing a hitherto previously unidentified large fraction of the uncertainty of impacts between different modelling assessments. It is recommended that future formulations of aircraft NO
<sub>x</sub>
emissions focus efforts on the detailed and accurate placement of emissions at cruise altitudes to reduce the uncertainty in future assessments of aviation NO
<sub>x</sub>
impacts.</EA>
<CC>001D16C04C; 001E02D10</CC>
<FD>Trafic aérien; Avion; Oxyde d'azote; Etude impact; Ozone; Pollution air; Troposphère; Forçage; Transfert radiatif; Potentiel réchauffement global; Altitude; Composé de l'azote; Oxydant photochimique; Changement climatique</FD>
<FG>Climatologie dynamique</FG>
<ED>Air traffic; Airplane; Nitrogen oxide; Impact study; Ozone; Air pollution; Troposphere; Forcing; Radiative transfer; Global warming potential; Altitude; Nitrogen compounds; Photochemical oxidants; Climate change</ED>
<EG>Dynamical climatology</EG>
<SD>Tráfico aéreo; Avión; Nitrógeno óxido; Estudio impacto; Ozono; Contaminación aire; Troposfera; Forzamiento; Transferencia radiativa; Potencial calefacción global; Altitud; Compuesto nitrogenado; Cambio climático</SD>
<LO>INIST-8940B.354000503801620180</LO>
<ID>13-0311008</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000019 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000019 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0311008
   |texte=   The assessment of the impact of aviation NOx on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023